Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Примеры решения задач / Введение в анализ / Предел функции / 1 2 3 4 5 6

решения некоторых задач

Предел функции


Предельная точка множества. Предел функции в точке

Пусть . Число называется предельной точкой множества X, если

Из определения следует, что любая окрестность точки x0 содержит точку из множества X, отличную от x0. Сама точка x0 может принадлежать, а может и не принадлежать множеству X.

Значение +∞ есть предельная точка множества X, если

Значение -∞ предельная точка множества X, если

Точка , не являющаяся предельной точкой множества X, называется изолированной точкой множества X, т. е.

Число называется предельной точкой множества , если из этого множества можно выделить последовательность (xn) различных точек, сходящуюся к x0. (Данное определение и определение, указанное в самом начале эквивалентны)


решения некоторых задач


-1-2-3-4-5-6-



© 2006-2017 ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, предел , дифференциал , детерминант , интеграл

     Предельная точка множества, предел функции в точке, изолированная точка множества.