Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





Играйте бесплатно в игровые автоматы онлайн Клубничка на free.vulcanavtomat.net.
     Примеры решения задач / Интегральное исчисление / Неопределенные интегралы / 1 2 3 4 5 6 7 8 9 10 11

решения некоторых задач

Неопределенные интегралы

     В дифференциальном исчислении основной операцией является нахождение производной заданной функции. Сущность здесь заключается в установлении скорости изменения этой функции по сравнению с аргументом. Весьма часто, однако, приходится решать обратную задачу, когда по заданной скорости течения какого-либо процесса требуется восстановить сам этот процесс. В этом случае с математической точки зрения вопрос проводится к отысканию функции по ее производной. Эта операция, называемая интегрированием, является основной во второй половине математического анализа - интегральном исчислении.

     Пусть функция f(x), заданная в некотором промежутке* [a, b], во всех его точках является производной функции F(x) , также заданной в [a, b]. Тогда эта последняя функция F(x) называется первообразной функцией для функции f(x) (в промежутке [a, b]).

     Имеет место

     Теорема 1. У всякой непрерывной на промежутке [a, b] функции имеется первообразная.

     Доказательство этой теоремы будет дано далее.

     Нетрудно видеть, что, если функция F(x) есть первообразная для f(x), то функция F(x) + C при любом постоянном C также является первообразной для f(x). В то же время никаких других первообразных, кроме функций вида F(x) + C, у f(x) уже быть не может. Действительно, если F1(x) есть какая-то первообразная для f(x), то производная разности F1(x) - F(x) будет всюду на [a, b] равняться нулю, а тогда сама разность есть величина постоянная, т. е.

F1(x) - F(x) = C     и     F1(x) = F(x) + C.

     Если F(x) есть первообразная функция для f(x), то функция двух аргументов x и C, равная F(x) + C, называется неопределенным интегралом функции f(x) и обозначается символом

     Таким образом, неопределенный интеграл какой-нибудь функции представляет собой общий вид первообразных функций для этой функции. Величина C, входящая в определение неопределенного интеграла, называется "произвольной постоянной". Придавая ей то или иное закрепленное значение, можем получить из неопределенного интеграла любую первообразную.

     Легко понять, что из самого определения понятия интеграла вытекает следующее утверждение:

     Теорема 2. Производная неопределенного интеграла равна подинтегральной функции, т. е.


решения некоторых задач


   _____________________________________________________

*   Этот промежуток может быть замкнутым, открытым или полуоткрытым. В тексте мы употребили обозначение замкнутого промежутка лишь для определенности.


-1-2-3-4-5-6-7-8-9-10-11-



© 2006- 2017  ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, прямоугольник , интегралы Френеля

     Неопределенные интегралы: интегрирование, первообразная функция. Теорема: у всякой непрерывной на промежутке функции имеется первообразная. Теорема: Производная неопределенного интеграла равна подинтегральной функции.