Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Примеры решения задач / Введение в анализ / Комплексные числа

решения других задач по данной теме


Даны комплексные числа z1 = -2 + 5i и z2 = 3 - 4i. Найти:   а) z1 + z2;   б) z2 - z1;   в) z1z2;   г) z1/z2.


Решение.

а), б). Для комплексных чисел z1 = x1 + iy1, z2 = x2 + iy2 сумма и разность находятся по формулам z1 ± z2 = (x1 ± x2) + i(y1 ± y2).

В нашем случае имеем z1 + z2 = (-2 + 3) + i(5 - 4) = 1 + i, z2 - z1 = 3 - (-2) + i(-4 - 5) = 5 - 9i.

в) Перемножаем z1 и z2 как двучлены с учетом равенства i2 = -1:

z1z2 = (-2 + 5i)(3 - 4i) = (-2)3 + 15i + 8i - 20i2 = -6 + 20 + i(15 + 8) = 14 + 23i.

г) Для нахождения частного умножим числитель и знаменатель этой дроби на число, сопряженное знаменателю, т.е. на 3 + 4i; получим .


решения других задач по данной теме



© 2006-2021 ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, определители , плоскость , миноры , векторы

     Примеры решения задач: даны комплексные числа z1 = -2 + 5i и z2 = 3 - 4i. Найти: а) z1 + z2; б) z2 - z1; в) z1*z2; г) z1/z2.