Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





Тут: http://shopnebolel.ru/cat/mixture/ - лечебные настойки.
     Формулы / Множества / Функция, отображение, мощность / 1 2 3 4 5


Функция, отображение, мощность

     Часто говорят, что функция есть переменная величина, зависящая от другой переменной величины (аргумента). В применении к обычным функциям, изучаемым в школе, как y = sin x, это определение вполне подходит и может применяться в преподавании. Наша задача состоит в более точном уяснении сущности этого понятия и получении современного его определения. Прежде всего, если взять функцию

y = sin2x + cos2x,

то ее значение уже не зависит от значения x. Далее, под величинами принято понимать такие объекты, которые можно сравнивать между собой, т. е. такие, между которыми существуют отношения больше и меньше. Между тем в математике рассматриваются также и функции, для которых эти отношения не установлены, как, например, в случае комплексных чисел или вообще элементов некоторого множества. Внимательное рассмотрение показывает, что в понятии функции существенно не столько ее изменение с изменением аргумента, сколько сам закон соответствия, в силу которого по каждому значению аргумента однозначно определяется соответствующее ему значение функции. Так функцию

y = sin2x + cos2x

можно определить, просто сказав, что каждому действительному числу x она ставит в соответствие число 1. Соответствие есть закон, позволяющий для каждого элемента x некоторого множества X однозначно указать некоторый объект (соответствующий данному элементу). Эти слова лишь поясняют понятие соответствия, но не должны пониматься как его определение. Понятие соответствия, как и понятие множества, принимается за основное, не подлежащее определению. Тогда наиболее общее определение функции будет такое:

     Определение. Функцией, заданной (или определенной) на некотором множестве X, называется соответствие, в силу которого любой элемент x множества X определяет некоторый (соответствующий ему) объект f(x).

     Множество X называется областью определения функции, а множество Y - объектов, соответствующих всем элементам множества X, - областью значений функции.


-1-2-3-4-5-



© 2006- 2017  ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, пропорция , свойства геометрической прогрессии

     Функция, отображение, мощность. Область определения функции, область значения функции.