Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Примеры решения задач / Дифференциальное исчисление функций одной переменной / Производная обратной функции. Производная функции, заданной параметрически. Производная функции, заданной в неявном виде.

решения других задач по данной теме


Найти f'(x), если y = f(x) и ρ = (ρ, φ - полярные координаты).


Решение.

Поскольку y = ρ cos φ, x = ρ sin φ, то y = sin φ, x = cos φ. Далее, dy = a(sin φ + φ cos φ)dφ, dx = a(cos φ - φ sin φ) . Отсюда, если a(cos φ - φ sin φ) ≠ 0, находим


решения других задач по данной теме



© 2006-2024 ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, логарифм , кардиоида , параболоид , лемниската

     Примеры решения задач: найти f'(x), если y = f(x) и ...