Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Теоретические исследования в области квантовой физики и теории относительности, широкое использование ЭВМ в различных областях математической физики, включая и обратные (некорректно поставленные) задачи, потребовали значительного расширения используемого математической физикой арсенала математических методов. Наряду с традиционными разделами математики стали широко применяться теория операторов, теория обобщенных функций, теория функций многих комплексных переменных, топологические и алгебраические методы. Это интенсивное взаимодействие теоретической физики, математики и использования ЭВМ в научных исследованиях привело к значительному расширению тематики, созданию новых классов моделей и подняло на новый уровень современную математическую физику. Все это внесло большой вклад в развитие научно-технического прогресса.

     Постановка задач математической физики заключается в построении математических моделей, описывающих основные закономерности изучаемого класса физических явлений. Такая постановка состоит в выводе уравнений (дифференциальных, интегральных, интегро-дифференциальных или алгебраических), которым удовлетворяют величины, характеризующие физический процесс. При этом исходят из основных законов, учитывающих только наиболее существенные черты явления, отвлекаясь от ряда его второстепенных характеристик. Такими законами являются обычно законы сохранения, например, количества движения, энергии, числа частиц и т. д. Это приводит к тому, что для описания процессов различной физической природы, но имеющих общие характерные черты, оказываются применимыми одни и те же математические модели.

     Для математической физики характерно также то, что многие общие методы, используемые для решения задач математической физики, развились из частных способов решения конкретных физических задач и в своем первоначальном виде не имели строгого математического обоснования и достаточной завершенности. Это относится к таким известным методам решения задач математической физики, как методы Ритца и Галеркина, к методам теории возмущений, преобразований Фурье и многим другим, включая метод разделения переменных. Эффективное применение всех этих методов для решения конкретных задач является одной из причин для их строгого математического обоснования и обобщения, приводящего в ряде случаев к возникновению новых математических направлений.

     Воздействие математической физики на различные разделы математики проявляется в том, что развитие математической физики, отражающее требования естественных наук и запросы практики, влечет за собой переориентацию направленности исследований в некоторых уже сложившихся разделах математики. Постановка задач математической физики, связанная с разработкой математических моделей реальных физических явлений, привела к изменению основной проблематики теории дифференциальных уравнений с частными производными. Возникла теория краевых задач, позволившая впоследствии связать дифференциальные уравнения с частными производными с интегральными уравнениями и вариационными методами.


-1-2-3-



© 2006- 2019  ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, уравнение , одз

     Постановка задач математической физики, построение математических моделей физических явлений, воздействие математической физики на различные разделы математики.