Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Формулы / Высшая алгебра / Евклидовы пространства / 1 2


     Нормированные векторы

     Вектор называется нормированным или единичным, если

     Если то соответствующими этому вектору нормированными векторами будут


     Нормированный базис

     Система векторов для которой

называется ортонормированной.

     Во всяком пространстве существует ортонормированный базис. Из произвольного базиса пространства ортогональный базис может быть построен с помощью процесса ортогонализации:

     

      где

      где

   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .

      где

     Пронормировав каждый вектор получим ортонормированный базис. В ортонормированном базисе () для векторов имеем:


-1-2-



© 2006- 2017  ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, асимптота , расширенная матрица системы

     Нормированные векторы, нормированный базис.