Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Элементарная и проективная геометрия привлекают внимание математиков главным образом под углом зрения изучения их логических и аксиоматических основ. Но основными отделами геометрии, где сосредоточиваются наиболее значительные научные силы, становятся дифференциальная геометрия, алгебраическая геометрия, риманова геометрия.

     Практическое использование результатов теоретического математического исследования требует получения ответа на поставленную задачу в числовой форме. Между тем даже после исчерпывающего теоретического разбора задачи это часто оказывается весьма трудным делом. Зародившиеся в конце 19 и в начале 20 вв. численные методы анализа и алгебры выросли в связи с созданием и использованием ЭВМ в самостоятельную ветвь математики - вычислительную математику.

     Отмеченные основные особенности современной математики и перечисленные основные направления исследований математики по разделам сложились в начале 20 в. В значительной мере это деление на разделы сохраняется, несмотря на стремительное развитие математики в 20 в. Однако потребности развития самой математики, "математизация" различных областей науки, проникновение математических методов во многие сферы практической деятельности, быстрый прогресс вычислительной техники привели к перемещению основных усилий математиков внутри сложившихся разделов математики и к появлению целого ряда новых математических дисциплин (теория автоматов, теория информации, теория игр, исследование операций, кибернетика, математическая экономика). На основе задач теории управляющих систем, комбинаторного анализа, теории графов, теории кодирования возник дискретный анализ. Вопросы о наилучшем (в том или ином смысле) управлении физическими или механическими системами, описываемыми дифференциальными уравнениями, привели к созданию оптимального управления математической теории.

     Исследования в области общих проблем управления и связанных с ними областях математики в соединении с прогрессом вычислительной техники дают основу для автоматизации новых сфер человеческой деятельности.


-1-2-3-



© 2006- 2017  ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, корень , действительная полуось гиперболы

     Современная математика.